# Array1 , array2, and F-test are not significantly different in the two-sentence distribution used to distinguish between the two sample variance functions.

However, these groups have different levels of test score variability.

## How to write a test (F: = FTEST (array1, array2)

Array1 is the first array or range of prime numbers.

Array2 is the second array or range of second numbers.

To use this tool, click on the Data tab and in the Analysis group , click on Data Analysis . If the Data Analysis command is not available, you must download the Toolpak Analysis separately.

To download and activate the Analysis Toolpak , follow these steps:

• On the Header File button, then click on the options and click on Add INS Category click.

• In the Manage box, select the Analysis Toolpak option and then click the Go button.

• In the Add Ins dialog box , check Analysis Toolpak , and then click Ok .
• If the Analysis Toolpak is not available in the Add Ins box , click Browse to find it .

Well, we want to analyze the data through the F-Test Two-Sample for Variances .

In our table we have the scores for the 2 groups that are in the range A2: B12 . Column A contains group 1 data and column B contains group 2 data.

To use the F-Test Two-Sample for Variances , follow these steps:

• Go to the Data tab.
• In the Analyzes group , click Data Analysis .

• The Data Analysis dialog box appears.

• From the Analysis tool drop-down menu , select F-Test Two-Sample for Variances and click ok .
• The F-Test Two Sample for Variances dialog box will appear.
• Go to the Input section . For the first variable range of A1: A12 choose, for the second variable range of B1: B12 to choose from.
• Tap Labels in the first row to display the resulting header.
• Go to the Output section and select the cell in which you want the summary to be displayed.
• Click ok .

Important Note: Make sure that the variance of variable 1 is greater than the variance of variable 2. In this case, it is 2.3 <9.2. If not, change your data. Finally, Excel calculates the integer F, which is the ratio of variance 1 to variance 2 (F = 2.3 / 9.2 = 0.25).